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1. Introduction

The name “fuzzy logic in narrow sense”, in briefiZzty logic”, denotes several different proposals of
formal logical systems to handle vague predicates figorous way. Now, in spite of a large series o
interesting results, there are again several igitis against this topic. The main part of thesegcsms
arise from misconceptions, in my opinion. Nevemislthere are criticisms suggesting the necessity f
new adequate basis for fuzzy logic.

As an example of a misconception we quote F.IktRe (see [26, 27]) who, in answering a paper of
C. W. Entmann [3] and in reviewing the basic bobR oHajek [14], disputes Entmann’s claim that fuzz
logic is an extension of the classical one:

“Most logicians think that one logic is an extensiaf another if it contains all the theorems of ttieer

... But this is not a sense in which fuzzy loganigxtension of classical logic; fgA= A) is a theorem

of classical logic but not of fuzzy logic. Indegdan be shown that there is no theorem of fuzgig (in

0, O, =) which is not already a theorem of classical logo. classical logic in fact is an extension of

fuzzy logic, in the usual use of the term ‘extawris@nd not the other way around.”.
On the other hand the conviction that fuzzy logi@deviantlogic and not only an attempt to extend
classical logic is one of the reasons of the negatidgment of many philosophers. As an example, in
speaking about the solution of the Heap paradoggsed by fuzzy logic (see Goguen [9] and Hajek and
Novéak [16]), R. Sorensen in [29] claims

"I am a logical conservative in that | deny thaguaness provides any reason to reject any theorem o

inference rule of standard logic"
In accordance'instead of changing logic, we should change ounigps about how language works".
Notice that the word used fshanging” and not‘enlarging” . Instead, in my opinion, it is correct to
consider fuzzy logic as an attempt to extend tiesgpof action of classic logic to admit predicatech
are “vague” (more preciselgraded in nature. In this sense it is not at all a dewigic. The basic
guestion is the adequateness of such an attemptatrdpossible conflict with classical logic.

More relevant criticisms are related with compasgand effectiveness: two basic notions in any
logic. Indeed, Pelletier observes that while clzasiogic is semantically compact this is not tiase of
fuzzy logic

“where there can béfor examplg an unsatisfiable infinite sét where every finite set is satisfiable”
On the other hand,

“since all proofs are by definition finite, therai therefore be no general proof theory for fupgyd”.
Also, while the set of valid formulas in classit@dic is recursively enumerable:

“Hajek then shows that no similar result is possifdr either the Lukasiewicz or Goguen logics: no

recursive axiomatization for either of these logipossible ...
Pelletier emphasizes the importance of this factupzy logic:

“Many observers might think this should the deatblkfor fuzzy logic” [26].

Notice that, in spite of these observations, tledall opinion expressed by Pelletier on Hajek’s bisok
very positive.

In this position paper we observe that in therdiiere there are two kinds of answers to these
guestions corresponding to two different approaduweduzzy logic. The first one (and the more
extensively embraced by the fuzzy logic commurnigyeferred to Hajek’s school and it characterizgd
deduction apparatus which are crisp in nature.uchsa case to obtain the compactness and the
effectiveness one passes from a fixed valuatiosbagto the valuation algebras belonging to theewar



-2-

generated by such an algebra (see [2, 15, 18,01R, The latter approach refers to graded deduction
apparatus in accordance with the ideas of J.A. @oagind J. Pavelka (see [9, 25] and also [7, 21222,
24, 30]) where the valuation algebra is fixed aratigd set of hypotheses and graded inferenceartges
admitted. In such a case | argue that there isifiiculty to obtain compactness and effectiveness
provided that correct definitions are adopted. €hdsfinitions, suggested by the theory of effective
domains (see [1, 7, 8]), are the correct ones dimeanotion of computability in the framework of a
continuous set of truth values have to be totalffeent from the notion of computability in the
framework of the discrete set {0,1}. The first oizerelated with the idea of an endless effective
approximation process, the latter with the idearoéffective process giving the exact result afttnite
number of steps.

2. Preliminaries
We recall some elementary notions on fuzzy logee (42, 14, 23, 32] for a detailed exposition). Lee
a bounded lattice arfsla nonempty set, then we chtsubsebr fuzzy subset of &y maps: S - L from
Sinto L (see [32]). Given a natural numbreann-ary L-relationor fuzzy relations anL-subset o' We
denote by *the class of all the-subsets o8and byP(S) the class of all the subsets®fGiven 0L, the
openA-cutof sis the set X0S: s(X)>A}, the closedA-cutthe set «0IS: s(X)=A}. We say thasis finite if
Supfs) = {xOS: s(X) # 0} is finite. Given twoL-subsets,; ands,, we sets;[Js, provided that;(X)<s(X)
for everyx(Sand in such a case we say thas contained in s The pair (5, 0) is a bounded lattice
whose meets and joins we caitersectionand union. We denote byn and[] these operations and
therefore we set, for evesyands; in LS andxOS,

(8:U5)(¥) =s1(}) (%) 5 (510 S)(X) = su(X)(X).
If 0 and 1 are the boundslin we callcrisp anyL-subset whose values are in {0,%e associate every
subsetX of Swith a crispL-subset, i.eits characteristic functioa{0,1} ® defined by settingx(x) = 1 if
XOX andcy(x) = 0 otherwise. In accordance, we identify thessR(S) of all subsets oEwith the class
{0,1}° of crisp fuzzy subsets &

Two main approaches to fuzzy logic exist. Infibvener the deduction apparatus works on a crisp set
of hypotheses to give the related crisp set of @gusnces (proposed by P. Hajek and others). liattes
the deduction apparatus works on a fuzzy subsetsypbtheses to give the related fuzzy subset of
consequences (proposed by G. Goguen, J. Pavelkatlzers). We refer to them aagraded approach
in brief U-approach and graded-approachin brief G-approach respectively. We prefer such a
terminology to the usual one of “with classical syi and “with evaluated syntax” since the diffecens
semantic in nature and it is a consequence ofrdiftedefinitions of the entailment relation. In lhadhe
cases one considers a first order languagevahdition algebrasi.e. bounded latticesquipped with
suitable operations to interpret the logical cotines. In this paper we refer to fuzzy logics whose
language coincides with the classical one extemdgdpossible logical constants. Also we considher t
most important class of valuation algebras,stamdard algebras.e. algebras whose domain is the real
interval [0,1] and whose operations are given bgrainuoug-norm[] together with the related residuum
- . A basic example is theukasiewicz’s produdil whereA = (A+41)[0 andA - = (1-A+L)[1, for
everyA, 4 111[0,1].

Given a valuation algebra and a first order lagguave calL-interpretationor fuzzy interpretatiom
pair ©O,l) where

- D is a set we cathe domairof the interpretation

- 1(r) is ann-ary L-relation inD for anyn-aryrelation name

-1(c) is an element i for any constant

- I(f) in ann-ary function inD for anyn-ary function namé.
Usually one assumes that in the language theregioal constants to interpret suitable truth valueor
example, in rational Pavelka logic all the elemdantshe set [0,1] of rational numbers in [0,1] are
represented by logical constants. Denoté-bgm the set of formulas, then, given a fuzzy intergieta
(D,1), we can evaluate inthe formulas in a truth-functional way, as usuaifdstunately, in the cadeis
not complete it is possible that some quantifiediida cannot be evaluated. This since the univeursadl
existential quantifiers are interpreted by the tgsaupper bound and by the least upper bound,
respectively. We caBlafean interpretation in which all the formulas arelaated and in such a case we
call truth-functional valuatiorthe valuatiorm : F - L of the formulas induced by(l).

In theU-approach, givemr 0 Form, we say that an interpretatioD,() is amodel ofa provided that
m(a) = 1. Given a se€T of formulas, we say thabD(l) isa model ofT if (D,I) is a model of any formula in
T. Every standard algebra enables us to defineetmailment relations.
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Definition 2.1. Given a standard algebra ([0,0], - ) denote byarl(C) the class of all linearly ordered
algebras in the variety generated by ([0,1]~ ). Then we calll-modelan interpretation in ([0,11], -)
andVarl([J)-modelan interpretation in a valuation algebra/arl(0]). GivenT O FormandaldForm, we
write

-Thka provided that every safé-model ofT is a model of,

- T Fvan@my @ provided that every saféarl(CJ)-model of T is a model of.

These two entailment relations are associatedtwibhdifferent notions of tautology. We write,a and
Evarny@ instead of] knaandO Fyana, respectively.

Definition 2.2. A formula a such thatk; a is named atandard//~tautology A formula a such that
Evar(oy @ iS Nnamed @eneral L-tautology

Then a standard-tautology is a formula satisfied in all thémodels and a general-tautology is a
formula satisfied in all the sakéarl([1)-models. In first order fuzzy logic the generatautologies form
a subset of the set of standardautologies. The deduction apparatus Urapproach is defined by
adopting the same paradigm of classical logichiyea set of logical axioms and suitable inferemntes.
This apparatus enables us to generate, given spJ@et of proper axioms, the related (crisp) $et o
theorems.

Instead in th&-approach, the semantics is defined as follows.

Definition 2.3. Given a standard algebra, i1 [0,1]7°™ be afuzzy theoryi.e. a fuzzy subset of formulas.
Then we say thatl)|l) is a model ofz, in brief ©,) F 7, provided thatm Oz. Moreover, thdogical
consequence operat the mag : [0,1]°™ - [0,1]7°™ such that,

L(7)(a) =Inf{m(a) : O,1) F}, (2.1)

for everyr 0L ™ and aJForm. Tau= L{(0) is called thduzzy subset of tautologies

The numbelL{(7)(q) is sometime callettuth degree ofr in 7. This is not a correct expression, in my
opinion and this since such a number is not a tetiree but a constraint (i.e. a piece of inforargtbn

a truth degree. Indeed, observe that the aim ofagiy is elaborate (incomplete) information. le ttase
of fuzzy logic it is reasonable that such an infation is expressed by clairas “the truth value otr is
betweent andy” i.e. by assigning, for every formutg an interval constrainti[ 4] on the actual truth
value ofa. On the other hand, in the fuzzy logics with addbnegation we can split such a constraint
into the two lower-bound constraints “the truthues ofa is greater or equal W' and “the truth values
of = ais greater or equal tq.". Then it is not restrictive to assume that thaikable information is a set
of lower-bound constraints on the actual truth degsf the formulas. Also, we can reduce this set to
function r. In accordancéy(7)(q) is the best possible lower-bound constraint enttath degrees of the
formula a givenrand it gives in an explicit way the whole infornaaticarried on by. Observe  that
the relationk is in accordance with Definition 2.3 sin€e; aif and only if L{(T)(a) =1. The next basic
step of theG-approach is to define the deduction apparatus.

Definition 2.4. A fuzzy Hilbert systens a pair [@,R) wherela is a fuzzysubset of formulas, tHezzy
subset of logical axiomandR is a set of fuzzy inference rules. In tuarfuzzy inference ruiie a pair =
(r',r"), where

- I' is a partiah-ary operation ofrorm,

- 1" is ann-ary operation on [0,1dreserving the least upper bounds (continuity Hygsis).

We indicate an application of an inference nulgy the picture
a,,..a, . ApyenA,
r(a,,..a,) L (AyaAy)
whose meaning is that:
IF you know thatr,...,a, are true (aleast) to the degred,... A,
THEN r'(ay,...,ay) is true (at least) at level(Ay,...,An).
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A proof rof a formulaa is a sequence,...,a,of formulas such thatr, - a, together with the related
"justifications". This means that, for any formug we must specify whether

() a; is assumed as a logical axiom; or

(i) a is assumed as an hypothesis; or

(i) a; is obtained by the first component of a rule (iclsa case we have to specify the rule and the
formulas in the listy,...,a;., used by the rule).
Let 7 be a fuzzy theory (the available information) aral proof. Then thgaluationVal(7z7) of 77with
respect toris defined by induction on the lengtiof 77as follows:

la(am) i, is assumed as a logical axiom,
Val(rzr) = < 1(ay) if an, is assumed as an hypothesis,

r*(Val(74i(1)),n,...,val(7i(n)),7)) if an=r"(q,..., Gw)

where, ¥i(1)<m,...,I<i(n)<m.If a is the formula proven by the meaning o¥al(7z77) is that:

given the informatiorr, /rassures thatr holds at least at level Mair).
Different proofs of the same formutacan give different valuations. Then, we have tefile pieces of
information on the truth degree afobtained by all the possible proofsaf

Definition 2.5. Given a fuzzy Hilbert's systena,R), the operatob; : [0,1]°™ - [0,1]™™ defined by
setting

D«(7)(a) = Sud Val(7z1) : rmis a proof ofa} (2.2)
is calledthe deduction operator ofa, R).

We are now able to give a general definition ozfulogic with evaluated syntax.

Definition 2.6. Given a standard algebra, we say that the refateay logicis axiomatizablgrovided
that theres a fuzzy Hilbert system such that = Dy. In such a case we say also thaoanpleteness
theoremholds true.

There is no difficulty to extend all these defimits to any valuation algebra. Another extensian is
giving an abstract definition of fuzzy semanticaatordance with Pavelka's ideas.

Definition 2.7. Given a valuation structure fazzysemantics is a clas®! of valuations in this structure
of the set of formulas.

An example is obtained by assuming thdtis the class of truth functional valuations bugrthare also
interesting examples of non truth-functional sentantt is immediate how to extend all the defioris in
this section by referring to any abstract fuzzy sefics.

3. Compactness

A first answer to Pelletier’'s claim about the n@mpactness and non effectiveness of fuzzy logic is
simply to observe that in the case of valuationdtires with finitely many elements there are saver
counterexamples (see for example [10]). A more dermgnswer is necessary in the case the set of trut
degrees is infinite, for example the interval [0]hfleed in théJ-approach one distinguishes two notions
of compactness corresponding to the two entailmedations k) and ko (see [14]).

Definition 3.1. We say that the logi€ associated with a standard algebra ([(;1}-) is compact in
standard senserovided that for every theoflyand a formula,

T ko a = there is afinite paif; of T such thatT; k; a .
L iscompact in a general seng@ovided that

T kvan@my @ = there is a finite paft; of T such thatT; Fyano) a.

The following very interesting result shows that wen avoid Pelletier's criticisms by referring to
compactness in general sense (see [15]). We rellgrto Lukasiewicz logic, i.e. to the case is
tukasiewicz triangular norm. Nevertheless thesaltgshold true also for other basic logics.
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Theorem 3.2. While tukasiewicz logic is not compact in standsedse, it is compact in general sense.

A different notion of compactness is necessathéncase we refer to tii&@approach. Indeed in such a
case the compactness is a property of the logmadenuence operatby: [0,1]°™ - [0,1]°™ and in
defining it is necessary to take in account théedi#int topological structures of {0, T} and [0,1]°™.
This suggests to look at a continuity property aatlat a finiteness property (see [1]). Recallltimé of
a upward directed clag3is defined as its least upper bound, ieC = SupC.Also, the imagine of a
upward directed class by a monotone map is an updisgcted class.

Definition 3.3. Let (L, <) be a complete lattice, then a functidn L — L is continuousprovided that
H(limC) =lim H(C)

for any upward directed clagsof elements ir.. Given a nonempty s& we callcompactan operatoH

: L% ~ LSwhich is continuous in the latti¢€.

Notice that this notion, which is a basic one imadn theory, it is different from the one propossd
Pavelka and it is long time known in logic prograimg Indeed, it enables us to define the least @b
model of a program as a fixed point of the immesl@insequence operator. There are several reasons t
assume the continuity as the correct counterpahisohotion of compactness in fuzzy logic. Firsittythe
case of the lattice of all subsets of a giventbet,notion coincides with the usual one. Moreovwes can
characterize the continuity in the lattice of thedy subsets of a given set in terms of finite Juzzbsets

(see [20]). Indeed, define the relatigrby setting, for ang,, s, 0 L,

§<S = Si(X) <sy(x) for everyx O Supgsy).
Then we can prove thit: L5— L® is continuous if and only if, for every fuzzy subse
H(s) = O{H(s) : s is finite ands; < s}. (3.1)
Once we admit Definition 3.3, the following theorgives an answer to Pelletier’s criticism (se.[1]

Theorem 3.4. The deduction operator of a fuzzy Hilbert sys{ema countable languages compact.
Conversely, given a continuous operator H, a fuditbert system exists whose deduction operator
coincides with H.

As an example, in [1] one proves that all the triuhctional logics of zero order whose logical
connectives are interpreted by continuous functiares axiomatizable by a suitable Hilbert system.
Consequently, the corresponding logical consequepegator is compact. Also, an important example is
furnished bytukasiewicz logic with evaluated syntaxlogic whose language is enlarged by suitable
logical constants to denote the elements in {0;ie semantics is the truth-functional semantefsdd

by the Lukasiewicz algebra. We indicatefyysuch a logic and by, the related deduction operator. The
following theorem is an immediate consequence efdbmpleteness theorem for such a logic (see [23,
24, 25, 26]).

Theorem 3.5. The logical consequence operator of Lukasiewiciclagth evaluated syntax is compact.

4. Effectiveness

Another crucial question is the non recursive emaiméty of the set of tautologies. Again, the aeswf
Hajek’s school is to refer to the entailment relatiky.i) and therefore to the notion of general
[-tautology (see [15]). Indeed, the following imfamt fact holds true

Theorem 4.1. While the set of standard tautologies in tukasiewicst order logic is not recursively
enumerable, the set of generalttautologies is recursively enumerable.

So, it is sufficient to refer to the notion of gealdautology to remove Pelletier’s criticism.

A totally different apparatus is necessary if wi gonsider theG-approach to fuzzy logic. Indeed in
this case the effectiveness has to be expresstnd Bgomputability” of the logical consequence @ter
which is an operator from [0,]" to [0,1]°™. So, we have to define such a notion in some Waig. was
done in [7] and [8] in the framework of effectiverdains theory and where also the notions of receirsi
enumerability (equivalently semi-decidability) addcidability for fuzzy subsets are given. Again we
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have to take in account the difference betweestiineture of {0,15°™ and [0,1]°™. Indeed, the fact that
{0,1} is finite entails that the effectiveness ilagsical logic and in thg-approach to fuzzy logic is based
on the notion of finite-steps algorithm. Instea@ tiopological structure of [0,1] entails that ireth
G-approach the effectiveness has to be representeddbess approximation algorithms. The same kind

of algorithms, for example, enabling us to clairattreal-variable functions agx sin(x), cogx),... are
computable. In accordance, we propose the follow#fiitions (see [1, 5, 7]).

Definition 4.2. Given a nonempty s&with a codingwe callsemi-decidabler recursively enumerabke
fuzzy subses: S- [0,1] provided that a recursive map SxN - [0,1], exists which is order-preserving
(order-reversing) with respect to the second véiahd such that, for everylS

9X) =limp_..h(x,n). (4.1)
We say thasis decidableprovided that botls and its complement are decidable.

Equivalently, we say that a fuzzy subsé$ decidable provided that for amylS S(x) is the limit of a
nested effectively computable sequence of interwdtls rational bounds. There are several reasons in
support of these definitions. The first one is tihaty are in accordance with the usual ones fosessltof

S Indeed it is sufficient to observe that a sub6et Sis recursively enumerable in accordance with the
usual definition (see for example [28]) if and offlhere is a recursive mdp: SxN - {0,1} which is
order-preserving with respect to the second vagiahld such that, for evexylS, cx(x) = lim,_, .h(x,n).
Obviously,cx denotes the characteristic functionc@ndthe limit is defined with respect to the discrete
topology in {0,1}. Another reason is that all teeisting definitions of computability in fuzzy steory

are in accordance with Definition 4.2 (see for egbafi8] where a comparison with the existing nasiof
fuzzy Turing machine is done). Obviously, as inghse of famous Church thesis, it is not possthgve

a definitive proof that Definition 4.2 is the beste. As an immediate consequence of (4.1) we lave t
following proposition.

Proposition 4.3. Let s be semi-decidable. Then for evéry [0,1], the opemd-cut of s is recursively
enumerable while the closdecut belongs to th&,-level of the arithmetical hierarchy. If s assurely
a finite number of rational values, then both tipew and the closed cuts of s are recursively enaipher

Proof. Observe that the relatidifx,n)>1 is decidable and that the opéut ofsis
{xOS: there imON such thah(x,n)>A}
while the closedl-cut is
{xOS: for everyu [0, 1]q such tha < A there isnCIN, h(x,n)>A}.
The remaining part of the proposition is also emntde

The notion of semi-decidability enables us to edtdre classical notion of enumeration operator (see
[28]) to the operators on fuzzy subsets. WeSeQ= F{(9xS whereF«(9 is the class of finite fuzzy
subsets of

Definition 4.4. We say that a fuzzy operatét : [0,1F - [0,1]° is anenumeration operatoor a
computable operatdf a semi-decidable fuzzy subset: SEQ - [0,1] exists such that

H(s)(X) = Sudw(s, X) : & < s} (4.2)

This notion coincides with the one of computableragor in effective domains theory (see [7]). The
following are two important properties of the enuat®n operators.

Proposition 4.5. If H is an enumeration operator then H is continsowWoreover, for every
semi-decidable fuzzy subset s, the fuzzy subgeistémi-decidable.

In [1] one proves the following theorem where azfudeduction system is calledfectiveprovided that
the fuzzy subset of logical axioms is decidable wednference rules are computable in an unifoag.w

Theorem 4.6. The deduction operator of an effective fuzzy Hilbgsten{in a countable languages an
enumeration operator. Conversely, given an enurr@raiperator H, an effective fuzzy Hilbert system
exists whose deduction operator coincides with H.
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Observe that the converse part of this theorenmoiscompletely satisfactory since it is obtained by
admitting inference rules whose logical meaningjugstionable. In the following corollary we call
completea theoryr such thaDy(7)(- a) + D(7)(a) = 1.

Corallary 4.7. Given an effective fuzzy Hilbert system, if a fusstyof axioms is decidable, then the
related fuzzy set{X) of consequences is semi-decidablea. i complete and decidable, thel @ is
decidable.

In account of the axiomatizability of Lukasiewidest order logic with countable language, we obthin
following corollary.

Corollary 4.8. The logical consequence operator [ tukasiewicz first order logic with countable
evaluated syntax is computable. In particular, filezy subset of tautologies Tasi semi-decidable.

Observe that the criticized non effectiveness agyuogic is based on the fact that the (classset)of
standard tautologies, i.e. the closed 1-autfForm: D, (0J)(@) = 1}, is not recursively enumerable.
accordance with Proposition 4.3, this does notreglitt the fact that the fuzzy sub3ety of tautologies
is semi-decidable. It means only that, given amgnfda a,
while we are able to produce an increasing sequeh@tional numbers convergingTau (a), we are
not able to decide if the limit of this sequencegdsial to 1 or not.
This phenomenon is not a characteristic of fuzgjclgince it emerges whenever a constructive agproa
is proposed for a notion involving real numbersleed, in recursive analysis one proves the follgwin
proposition:
In the class of computable real numbers it is retidable whether two recursive real numbers are
equal or not.
Proposition 4.3 explains also why in the case wseamg the set of designed values is an interva(iKd,
the set of tautologies is semi-decidable whilehen¢ase we assume this set is a closed intet\id] fhe
set of tautologies is not semi-decidable (see [19])

We conclude this section by observing that sinceroflary 4.8 is a consequence of the
axiomatizability of Lukasiewicz logic, it refers @ (countable) language in which there is a logical
constant for every element in [Gg1]n spite of that, this corollary holds true aisee refer to a language
whose unique logical constants are 0 and 1.

Corollary 4.9. Let £}" be the tukasiewicz logic with evaluated syntas ilmnguage with only the
constants 0 and 1. Then the related logical consegel operator D is computable. Consequently, this
logic is effectively axiomatizable and the fuzaysst of tautologies is semi-decidable.

Proof. Taking in account the coincidence of the classitgrpretations in the two logics, we have that
D,  is the restriction ob, to the fuzzy subsets of formulas4fy”. ThenD, " is computable.

5. Conclusions and further criticisms

The answers to the criticisms on compactness afedteeness in both th&-approach and in the
G-approach are correct from a formal point of viewyiously. Nevertheless, we can consider these
answers satisfactory only if we admit the relatednmialisms as adequate representations of the
phenomenon we are interested in: the human everyalgnal activity in which the vagueness is
constantly involved. As in the case of Church Thaiesidefinitive verdict on this question is not gibke.
Differently from Church Thesis, there are againesalarguments against a claim of adequateness.

In the U-approach these arguments are related with the ehafiche clasd/arl(00) to define the
semantics. Indeed, in my opinion such a classitat@e since it contains valuation algebras varyrbm
human intuition. For example algebras with infigiteal truth values. Another question is that in
referring toVarl((J) we are forced to admit valuation algebras whiehraot complete and therefore to
distinguish safe and unsafe interpretations. Thapteteness theorem is possible only by excluding
unsafe valuations and this leads to the followingsgion,

- there is a way to decide in advance whether darmetation of the predicates in a language

originates a safe interpretation or not ?
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This question is of some importance, indeed, iroatance with [13], there is a formutawhich is a
general tautology but which matisfied at a degree different from 1 in an unsaéalel. Then in the
deduction apparatus of theapproachve can prove that is completely true in spite of the fact that there
is a world in whicha is not completely true. This is rather disturbing.
The feeling is that in the-approach the choice in favor ¥arl(0) is only an instrument to obtain an
axiomatizability theorem. Now, in my opinion, wevieato find a syntax fitting well an early existing
(natural) semantics and not a semantics fittind avpkoposed syntax. On the other hand, all theestis
in fuzzy set theory agree in considering the seimambtained by fixing the interval [0,1] a natural
semantics. This is not surprising since the notibgraded property is based on a continuum ohtrut
degrees and the real numbers are a good formalizatiour innate idea of the continuum. Then thigre
something of unsatisfactory in the impossibilityéder only to the interval [0,1] and to be fordedefer
to a variety of valuation structures. This rememther analogous situation in arithmetic, where the
intended semantics is not axiomatizable in firsleorlogic. So, the logicians where forced to prepas
first order system of axioms which is unsatisfagtince it admits non-standard models. Obviouslg, t
non axiomatizability of a whole logic (Lukasiewidmgic, for example) is worse than the non
axiomatizability of a particular field of mathenei(arithmetic) inside of a logic (classical logic)

In any case my main criticisms are philosophicalature and | can summarize them in the following
two points.

1. What's new in fuzzy logic (with respect to thaition of multi-valued logic) is the acceptande o
reasonings which are approximate as in Goguenigisnlof Heap paradox

In these reasonings the available information isnexessarily a crisp set and the conclusions atre n
necessarily at degree 1. Moreover, due to the rdiftetopological nature of {0,1} and [0,1], it is
misleading to adopt the same notion of effectiveraopted for the inferential apparatus of classica
logic. Instead,

2. while effectiveness in classical logic is cothgcelated with the recursive arithmetic paradigm,
effectiveness in fuzzy logic has to be related whin recursive analysis paradigm

Obviously, both the claims express only an opirdaad no definitive proof of them is possible.
G-approach avoids some of these criticisms. Mairlghows that also in the case the valuation
structure is fixed and the truth values are reahlmers, a logic with a related completeness theagsem
possible. As emphasized in this paper, this logitises suitable compactness and effectiveness
properties. Unfortunately, | am aware that alsd@kapproach is not free of further difficulties. Fiystas
in theU-approach, one requires the introduction in theuaxg of logic constants for the rational number
in [0,1]. This is an ingenious trick but it is napresentative of the human logical activity sincae
consider ¥ as a sentence (the result of Corolldyiginot a convincing answer since the proposed
inference rules are not natural at all). Moreottes G-approach is not sufficiently flexible. For example,
in assigning a fuzzy subset of hypotheses we haymit a precise lower-bound constraint to the truth
value of a formula while it should more naturabssign a fuzzy constraint. A lack of flexibility @&so
apparent in the proposed notion of fuzzy model dbizzy theory which is based on Zadeh’s crisp
inclusion. Indeed, lahbe a fuzzy model of a fuzzy theorylt is evident that both the assignmemtand
r cannot be considered definitive and precise sincepends on the subjective modeling of the vague
predicates anddepends on the subjective valuation of the trutirele of the formulas. Now assume that
eithermor ris subject to a slightly variation as a consequ@heegtuning process, an essential component
in all the applications in fuzzy mathematics. Thda possible thatn ceases completely to be a model of
r while it should be natural to expenis again a model of at some degre& his suggests that it should
be opportune to reformulate the notion of fuzzy eiad a fuzzy theory by substituting the crisp ursibn
with a graded inclusion. More in general, perhaggueness entails a semantics in which, differéram
Tarski's paradigm, notions as
"distance between modelsflexibility”, “learning”, “tuning”, “evolutionary meaning”, “linguistic
game”, “negotiation”
play a crucial role. On the other hand, it is nalyydor technical reasons that these notions agsept in
all the applications of fuzzy logic and, in partan in fuzzy control.
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Concluding, my persuasion is that we are far fleomefinitive answer to the question whether is
possible to formalize those human inferential psses in which vague notions are involved. In spite
that, | am trusting that the main difficulties wikk resolved by redefining in a more flexible wiag basic
formalisms. We cannot even exclude that the rebdarca general theory is an impossible task aatl th
we have to be satisfied in fragments of fuzzy Iadite to formalize processes in which, for examiple,
involved pieces of information are not too compkcaFuzzy logic programming and (the logical
approaches to) fuzzy control are examples in sudileation (see [6] and [31]).
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